Pierre Jacob is a French researcher. He is working on Philosophy of Mind and Philosophy of Language. He is currently the Head of the European Society for Philosophy and Psychology (ESPP) and of the Institut Jean Nicod.
He is lecturing (in french only) on Philosophy of Science, cognitive Sciences, and Philosophy of Language (video, 1h13mn).
Pierre Jacob est chercheur au CNRS, directeur de la Société de Philosophie et de Psychologie, et directeur de l'Institut Jean Nicod. Après ses travaux sur l'empirisme logique, il a principalement publié des articles et des livres sur des problèmes de philosophie du langage et de philosophie de l'esprit.
Voici une conférence en français consacrée à la Philosophie des Sciences, aux Sciences cognitives et à la Philosophie du langage (1h13mn).
Etudes - Philosophie de l'esprit et sciences cognitives (16:37)
Monisme versus dualisme ontologique (03:27)
Le programme de la naturalisation - Explications causales versus explications intentionnelles (09:39)
L'Institut des Sciences Cognitives à Lyon (06:54)
Recherches sur la vision et la perception (18:30)
Sur le sens du verbe (05:56)
Synthèse de la recherche en sciences cognitives (01:56)
La cognition morale (04:43)
Tuesday, 30 September 2008
Saturday, 27 September 2008
Pierre Jacob's lectures about Logical Positivism
Pierre Jacob is a French researcher. He is working on Philosophy of Mind and Philosophy of Language. He is currently the Head of the European Society for Philosophy and Psychology (ESPP) and of the Institut Jean Nicod.
He is lecturing (in french only) on Logical Positivism (videos, 1h44mn).
Please note that I was unable to prevent the beginning of all the Pierre Jacob's videos at once. Consequently, the loading of this page is very slow. I suggest you stop all the videos before viewing a part of the interview. Sorry for the disturbance.
Pierre Jacob est chercheur au CNRS, directeur de la Société de Philosophie et de Psychologie, et directeur de l'Institut Jean Nicod. Après ses travaux sur l'empirisme logique, il a principalement publié des articles et des livres sur des problèmes de philosophie du langage et de philosophie de l'esprit.
Voici une conférence en français consacrée au positivisme logique (1h44mn).
Veuillez remarquer que je n'ai pas réussi à empêcher le début automatique et collectif des vidéos de la page qui s'ouvrira. Le chargement de la page est donc long. Je vous conseille donc de stopper toutes les vidéos afin de faciliter le chargement de la page.
L'empirisme logique et le cercle de Vienne (08:40)
L'empirisme et le positivisme (05:18)
La nouvelle logique: Frege et Russell (12:55)
Wittgenstein (12:14)
Le Tractatus Logico-Philosophicus de Wittgenstein (08:20)
Philosophie et logique mathématique de Rudolf Carnap (11:22)
A propos du critère de la réfutabilité de Karl Popper (12:11)
Les divergences entre Carnap et Popper (11:22)
Critiques et limites du programme de l'empirisme logique (18:31)
De l'importance du programme de l'empirisme logique (03:42)
He is lecturing (in french only) on Logical Positivism (videos, 1h44mn).
Please note that I was unable to prevent the beginning of all the Pierre Jacob's videos at once. Consequently, the loading of this page is very slow. I suggest you stop all the videos before viewing a part of the interview. Sorry for the disturbance.
Pierre Jacob est chercheur au CNRS, directeur de la Société de Philosophie et de Psychologie, et directeur de l'Institut Jean Nicod. Après ses travaux sur l'empirisme logique, il a principalement publié des articles et des livres sur des problèmes de philosophie du langage et de philosophie de l'esprit.
Voici une conférence en français consacrée au positivisme logique (1h44mn).
Veuillez remarquer que je n'ai pas réussi à empêcher le début automatique et collectif des vidéos de la page qui s'ouvrira. Le chargement de la page est donc long. Je vous conseille donc de stopper toutes les vidéos afin de faciliter le chargement de la page.
L'empirisme logique et le cercle de Vienne (08:40)
L'empirisme et le positivisme (05:18)
La nouvelle logique: Frege et Russell (12:55)
Wittgenstein (12:14)
Le Tractatus Logico-Philosophicus de Wittgenstein (08:20)
Philosophie et logique mathématique de Rudolf Carnap (11:22)
A propos du critère de la réfutabilité de Karl Popper (12:11)
Les divergences entre Carnap et Popper (11:22)
Critiques et limites du programme de l'empirisme logique (18:31)
De l'importance du programme de l'empirisme logique (03:42)
Wednesday, 24 September 2008
Interview with Daniel Dennett
Daniel C. Dennett is Austin B. Fletcher Professor of Philosophy at the University of Tufts and Director of the Center for Cognitive Studies.
He is an american philosopher well-known for his work in Philosophy of Science and Philosophy of Mind. He received the Jean Nicod Prize in 2001 (Published lecture: Sweet Dreams).
Here you can find a interview with D. Dennett (video).
Daniel Dennett (1942- ) est professeur de Philosophie à l'Université de Tufts et directeur du Center for Cognitive Studies. Élève de Quine, spécialiste de philosophie des sciences et de philosophie de l'esprit, il est connu pour sa défense de l'évolutionnisme (adaptionnisme, proche de la position de Richard Dawkins).
Il reçut le prix Jean Nicod en 2001.
Vous trouverez ici un entretien filmé avec D. Dennett.
He is an american philosopher well-known for his work in Philosophy of Science and Philosophy of Mind. He received the Jean Nicod Prize in 2001 (Published lecture: Sweet Dreams).
Here you can find a interview with D. Dennett (video).
Daniel Dennett (1942- ) est professeur de Philosophie à l'Université de Tufts et directeur du Center for Cognitive Studies. Élève de Quine, spécialiste de philosophie des sciences et de philosophie de l'esprit, il est connu pour sa défense de l'évolutionnisme (adaptionnisme, proche de la position de Richard Dawkins).
Il reçut le prix Jean Nicod en 2001.
Vous trouverez ici un entretien filmé avec D. Dennett.
Monday, 22 September 2008
Pufendorf's Lectures
All the links to the Pufendorf's lecture previously posted (Récanati, Churchland, Searle, Pettit, Armstrong).
François Recanati's Pufendorf lectures (2008):
1) Contextualism and compositionality.
2) Circumstance-relativity: what it is and why it matters.
3) The implicit self.
4) The (Generalized) Reflexive Constraint.
Patricia Smith Churchland's Pufendorf lectures (2007):
1) What is Neurophilosophy?
2) A Perspective on Self, Agency and Free Will
3) 'Inference' to the Best Decision
4) Brain-based Values
John Searle's Pufendorf lectures (2006):
1) Consciouness
2) What is language?
3) The logical structure of society
4) Rationality and society
Philip Pettit's Pufendorf lecture: DEMOCRACY IN THREE DIMENSIONS (2005):
1) The Rule of the Populace
2) The Rule of the People
3) The Rule of the Public
4) Integrating the Dimensions.
D. Armstrong's Pufendorf lectures (2004):
1) The Scope and Limits of human Knowledge
2) In Defence of the cognitivist Theory of Perception
3) Four Dispute about Properties
4) Predication and Necessity
François Recanati's Pufendorf lectures (2008):
1) Contextualism and compositionality.
2) Circumstance-relativity: what it is and why it matters.
3) The implicit self.
4) The (Generalized) Reflexive Constraint.
Patricia Smith Churchland's Pufendorf lectures (2007):
1) What is Neurophilosophy?
2) A Perspective on Self, Agency and Free Will
3) 'Inference' to the Best Decision
4) Brain-based Values
John Searle's Pufendorf lectures (2006):
1) Consciouness
2) What is language?
3) The logical structure of society
4) Rationality and society
Philip Pettit's Pufendorf lecture: DEMOCRACY IN THREE DIMENSIONS (2005):
1) The Rule of the Populace
2) The Rule of the People
3) The Rule of the Public
4) Integrating the Dimensions.
D. Armstrong's Pufendorf lectures (2004):
1) The Scope and Limits of human Knowledge
2) In Defence of the cognitivist Theory of Perception
3) Four Dispute about Properties
4) Predication and Necessity
Friday, 19 September 2008
1907-2007: one hundred year of intuitionism
Le Centre Culturel International de Cerisy-La-Salle a accueilli le colloque "1907-2007: cent ans d'intuitionnisme", sous la direction de Pascal Boldini, Michel Bourdeau, Gerhard Heinzmann et Mark Van Atten, du mardi 5 juin au mardi 12 juin. Les invités étaient très prestigieux (Matthieu Marion, Jacques Dubucs, G. Heinzmann...).
Ce colloque sera publié aux éditions Verlag AG.
The workshop "1907-2007: one hundred year of Intuitionnism" took place at the Centre Culturel International de Cerisy-La-Salle, in june 2007, under the direction of Pascal Boldini, Michel Bourdeau, Gerhard Heinzmann and Mark Van Atten.
The papers will be published by Verlag AG.
About intuitionism.
You can have more informations about the workshop and the book by clicking "more".
The workshop
Mercredi 6 juin
Matin:
Dirk VAN DALEN: La biographie intellectuelle de Brouwer
Henk BARENDREGT: Brouwer et le mysticisme
Après-midi:
Alain MICHEL: Remarques sur la signification du supposé "semi-intuitionisme" français
Carl POSY: L'infini brouwerien
Jeudi 7 juin
Matin:
Conférence E. W. BETH
Per MARTIN-LÖF: La controverse Hilbert/Brouwer résolue?
Après-midi:
Philippe NABONNAND & Gerhard HEINZMANN: L'intuition chez Poincaré et Brouwer
Marcel GUILLAUME: De quelques contributions de mathématiciens du début du XXe siècle au débat sur les fondements
Vendredi 8 juin
Matin:
Richard TIESZEN: A l'intersection de l'intuitionnisme et de la phénoménologie
Bernd BULDT: Que nous dit le temps dans les mathématiques (intuitionnistes)?
Après-midi:
Mathieu MARION: Wittgenstein et Brouwer sur le sens et la preuve
Jacques DUBUCS: Vérité et expérience de la vérité
Samedi 9 juin
JOURNÉE DE REPOS
Dimanche 10 juin
Matin:
Jean FICHOT: L'interprétation fonctionnnelle de Gödel: constructivité et calculabilité
Douglas BRIDGES: Les "Reverse Mathematics" constructives
Après-midi:
Giovanni SAMBIN: Deux applications du constructivisme dynamique: le principe de continuité de Brouwer et les suites de choix dans la topologie formelle
Mitsu OKADA: Logique intuitionniste et logique linéaire
Lundi 11 juin
Matin:
Peter SCHRÖDER HEISTER: La justification opérative de la logique intuitionniste selon Lorenzen
Anton SETZER: Théorie de la démonstration et théorie des types de Martin-Löf
Après-midi:
Mohammad ARDESHIR: L'intuition chez Brouwer et Sührawardi
Charles McCARTY: Le nouvel intuitionnisme
Mardi 12 juin
Matin:
Göran SUNDHOLM & Mark VAN ATTEN: La bonne interprétation de la logique intuitionniste
Wim VELDMAN: Quelques applications du théorème de la barre de Brouwer
The Book
Préface, par Mark van ATTEN, Pascal BOLDINI, Michel BOURDEAU & Gerhard HEINZMANN
I. Brouwer and Brouwerian intuitionism
Another look at Brouwer's dissertation, par Dirk van DALEN
Brouwerian infinity, par Carl POSY
The new intuitionism, par Charles McCARTY
Truth and experience of truth, par Jacques DUBUCS
The proper explanation of intuitionistic logic: on Brouwer's demonstration of the Bar Theorem, par Göran SUNDHOLM & Mark van ATTEN
The intersection of intuitionism (Brouwer) and phenomenology (Husserl), par Richard TIESZEN
Brouwer on 'hypotheses' and the middle Wittgenstein, par Mathieu MARION
Brouwer's notion of intuition and theory of knowledge by presence, par Mohammad ARDESHIR
Buddhist models of the mind and the common core thesis on mysticism, par Henk BARENDREGT
II. Kindred spirits
Remarks on the supposed French 'semi-' or 'pre-intuitionism', par Alain MICHEL
Poincarré: intuitionism, intuition, and convention, par Gerhard HEINZMANN & Philippe NABONNAND
Some of Julius König's mathematical dreams in his New Foudations of Logic, Arithmetic, and Set Theory, par Marcel GUILLAUME
Gödel, constructivity, impredicativity, and feasibility, par Jean FICHOT
Lorenzen's operative justification of intuitionistic logic, par Peter SCHROEDER-HEISTER
III. Mathematical perspectives
The Hilbert-Brouwer controversy resolved?, par Per MARTIN-LÖF
Proof theory and Martin-Löf Type Theory, par Anton SETZER
Some remarks on linear logic, par Mitsuhiro OKADA
Two applications of dynamic constructivism: Brouwer's continuity principle and choice sequences in formal topology, par Giovanni SAMBIN
A reverse look at Brouwer's Fan Theorem, par Douglas BRIDGES
Some applications of Brouwer's Thesis on Bars, par Wim VELDMAN
Concluding remarks at the Cerisy conference, par Michael DUMMETT
A bibliography of L.E.J. Brouwer, par Dirk van DALEN
Ce colloque sera publié aux éditions Verlag AG.
The workshop "1907-2007: one hundred year of Intuitionnism" took place at the Centre Culturel International de Cerisy-La-Salle, in june 2007, under the direction of Pascal Boldini, Michel Bourdeau, Gerhard Heinzmann and Mark Van Atten.
The papers will be published by Verlag AG.
About intuitionism.
You can have more informations about the workshop and the book by clicking "more".
The workshop
Mercredi 6 juin
Matin:
Dirk VAN DALEN: La biographie intellectuelle de Brouwer
Henk BARENDREGT: Brouwer et le mysticisme
Après-midi:
Alain MICHEL: Remarques sur la signification du supposé "semi-intuitionisme" français
Carl POSY: L'infini brouwerien
Jeudi 7 juin
Matin:
Conférence E. W. BETH
Per MARTIN-LÖF: La controverse Hilbert/Brouwer résolue?
Après-midi:
Philippe NABONNAND & Gerhard HEINZMANN: L'intuition chez Poincaré et Brouwer
Marcel GUILLAUME: De quelques contributions de mathématiciens du début du XXe siècle au débat sur les fondements
Vendredi 8 juin
Matin:
Richard TIESZEN: A l'intersection de l'intuitionnisme et de la phénoménologie
Bernd BULDT: Que nous dit le temps dans les mathématiques (intuitionnistes)?
Après-midi:
Mathieu MARION: Wittgenstein et Brouwer sur le sens et la preuve
Jacques DUBUCS: Vérité et expérience de la vérité
Samedi 9 juin
JOURNÉE DE REPOS
Dimanche 10 juin
Matin:
Jean FICHOT: L'interprétation fonctionnnelle de Gödel: constructivité et calculabilité
Douglas BRIDGES: Les "Reverse Mathematics" constructives
Après-midi:
Giovanni SAMBIN: Deux applications du constructivisme dynamique: le principe de continuité de Brouwer et les suites de choix dans la topologie formelle
Mitsu OKADA: Logique intuitionniste et logique linéaire
Lundi 11 juin
Matin:
Peter SCHRÖDER HEISTER: La justification opérative de la logique intuitionniste selon Lorenzen
Anton SETZER: Théorie de la démonstration et théorie des types de Martin-Löf
Après-midi:
Mohammad ARDESHIR: L'intuition chez Brouwer et Sührawardi
Charles McCARTY: Le nouvel intuitionnisme
Mardi 12 juin
Matin:
Göran SUNDHOLM & Mark VAN ATTEN: La bonne interprétation de la logique intuitionniste
Wim VELDMAN: Quelques applications du théorème de la barre de Brouwer
The Book
Préface, par Mark van ATTEN, Pascal BOLDINI, Michel BOURDEAU & Gerhard HEINZMANN
I. Brouwer and Brouwerian intuitionism
Another look at Brouwer's dissertation, par Dirk van DALEN
Brouwerian infinity, par Carl POSY
The new intuitionism, par Charles McCARTY
Truth and experience of truth, par Jacques DUBUCS
The proper explanation of intuitionistic logic: on Brouwer's demonstration of the Bar Theorem, par Göran SUNDHOLM & Mark van ATTEN
The intersection of intuitionism (Brouwer) and phenomenology (Husserl), par Richard TIESZEN
Brouwer on 'hypotheses' and the middle Wittgenstein, par Mathieu MARION
Brouwer's notion of intuition and theory of knowledge by presence, par Mohammad ARDESHIR
Buddhist models of the mind and the common core thesis on mysticism, par Henk BARENDREGT
II. Kindred spirits
Remarks on the supposed French 'semi-' or 'pre-intuitionism', par Alain MICHEL
Poincarré: intuitionism, intuition, and convention, par Gerhard HEINZMANN & Philippe NABONNAND
Some of Julius König's mathematical dreams in his New Foudations of Logic, Arithmetic, and Set Theory, par Marcel GUILLAUME
Gödel, constructivity, impredicativity, and feasibility, par Jean FICHOT
Lorenzen's operative justification of intuitionistic logic, par Peter SCHROEDER-HEISTER
III. Mathematical perspectives
The Hilbert-Brouwer controversy resolved?, par Per MARTIN-LÖF
Proof theory and Martin-Löf Type Theory, par Anton SETZER
Some remarks on linear logic, par Mitsuhiro OKADA
Two applications of dynamic constructivism: Brouwer's continuity principle and choice sequences in formal topology, par Giovanni SAMBIN
A reverse look at Brouwer's Fan Theorem, par Douglas BRIDGES
Some applications of Brouwer's Thesis on Bars, par Wim VELDMAN
Concluding remarks at the Cerisy conference, par Michael DUMMETT
A bibliography of L.E.J. Brouwer, par Dirk van DALEN
Tuesday, 16 September 2008
Lectures: François Recanati
François Recanati is a researcher at the CNRS (Centre National de la Recherche Scientifique). He is the former President (1990-1993) of the ESAP (European Society for Analytic Philosophy). He is a philosopher of language and a linguist.
In 2008, he received the Pufendorf Prize and was invited to give some lectures.
You can find here the link to the lectures.
François Recanati's Pufendorf lectures:
1) Contextualism and compositionality.
2) Circumstance-relativity: what it is and why it matters.
3) The implicit self.
4) The (Generalized) Reflexive Constraint.
In 2008, he received the Pufendorf Prize and was invited to give some lectures.
You can find here the link to the lectures.
François Recanati's Pufendorf lectures:
1) Contextualism and compositionality.
2) Circumstance-relativity: what it is and why it matters.
3) The implicit self.
4) The (Generalized) Reflexive Constraint.
Sunday, 14 September 2008
Wittgenstein on the Web
There are a lot of webpages about Wittgenstein. Here you can find some links.
Wittgenstein's Texts
Big Typescript (German)
The Blue Book
Lecture on Ethics
Lectures on Philosophy
On Certainty
Papers of W held at Trinity College
Philosophische Untersuchungen
The Science of Logic (1913): reviewed by W.
W. notes ont Logic
Some Remarks on Logical Form
Tagebücher 1914-16 (Notebook in German)
Tractatus (German)
Tractatus (Ogden)
Organizations about Wittgenstein
British Wittgenstein Society
The Cambridge Wittgenstein Archive
Internationale Ludwig Wittgenstein Gesellchaft
The North American Wittgenstein Society
Nordic Network for Wittgenstein Research
University of Pittsburgh: Wittgenstein club (group of students reading Wittgenstein's works: notes and mp3 audio)
The Wittgenstein Archives (Un. of Bergen)
The Wittgenstein Network
The Wittgenstein Resarch Group
Blogs about Wittgenstein
Anderson Brown's Philosophy Blog
DuckRabbit
Language Games
Making sense of Wittgenstein
Meaning is Use
Methods of Projection
Philosophische Bermekungen
Tractatus Blogico-Philosophicus
Wittgenstein Light: Real Refreshment
Papers about Wittgenstein (scholars with papers online)
G E M Anscombe
Stewart Candlish
Peter Carruthers
James Conant
David Finkelstein
P M S Hacker
Edward Harcourt
Lars Hertzberg
Jim Hopkins
John Hyman
Colin Johnson
James Klagge
Michael Kremer
Paul Livingston
Methods of Projection (column of the right, middle of the page: full of papers in PDF)
Adrian Moore
Duncan Pritchard
Rupert Read
Peter Sullivan
Crispin Wright
Enjoy!
Wittgenstein's Texts
Big Typescript (German)
The Blue Book
Lecture on Ethics
Lectures on Philosophy
On Certainty
Papers of W held at Trinity College
Philosophische Untersuchungen
The Science of Logic (1913): reviewed by W.
W. notes ont Logic
Some Remarks on Logical Form
Tagebücher 1914-16 (Notebook in German)
Tractatus (German)
Tractatus (Ogden)
Organizations about Wittgenstein
British Wittgenstein Society
The Cambridge Wittgenstein Archive
Internationale Ludwig Wittgenstein Gesellchaft
The North American Wittgenstein Society
Nordic Network for Wittgenstein Research
University of Pittsburgh: Wittgenstein club (group of students reading Wittgenstein's works: notes and mp3 audio)
The Wittgenstein Archives (Un. of Bergen)
The Wittgenstein Network
The Wittgenstein Resarch Group
Blogs about Wittgenstein
Anderson Brown's Philosophy Blog
DuckRabbit
Language Games
Making sense of Wittgenstein
Meaning is Use
Methods of Projection
Philosophische Bermekungen
Tractatus Blogico-Philosophicus
Wittgenstein Light: Real Refreshment
Papers about Wittgenstein (scholars with papers online)
G E M Anscombe
Stewart Candlish
Peter Carruthers
James Conant
David Finkelstein
P M S Hacker
Edward Harcourt
Lars Hertzberg
Jim Hopkins
John Hyman
Colin Johnson
James Klagge
Michael Kremer
Paul Livingston
Methods of Projection (column of the right, middle of the page: full of papers in PDF)
Adrian Moore
Duncan Pritchard
Rupert Read
Peter Sullivan
Crispin Wright
Enjoy!
Friday, 12 September 2008
Lectures: Patricia Churchland
Patricia Smith Churchland is a Professor at the University of California, San Diego. She is a well-known member of the school called "eliminative materialism".
In 2007, she received the Pufendorf Prize and was invited to give some lectures. You can find here the link to the Pufendorf's lectures (videos).
Patricia Smith Churchland's Pufendorf lectures:
1) What is Neurophilosophy?
2) A Perspective on Self, Agency and Free Will
3) 'Inference' to the Best Decision
4) Brain-based Values
In 2007, she received the Pufendorf Prize and was invited to give some lectures. You can find here the link to the Pufendorf's lectures (videos).
Patricia Smith Churchland's Pufendorf lectures:
1) What is Neurophilosophy?
2) A Perspective on Self, Agency and Free Will
3) 'Inference' to the Best Decision
4) Brain-based Values
Tuesday, 9 September 2008
Lectures: John Searle
John R. Searle is Mills Professor of the Philosophy of Mind
and Language, at the University of California, Berkeley.
In 2006, he received the famous Pufendorf Prize and was invited to give some lectures. You can find here the link to the lectures (videos).
John Searle's Pufendorf lectures:
1) Consciouness
2) What is language?
3) The logical structure of society
4) Rationality and society
and Language, at the University of California, Berkeley.
In 2006, he received the famous Pufendorf Prize and was invited to give some lectures. You can find here the link to the lectures (videos).
John Searle's Pufendorf lectures:
1) Consciouness
2) What is language?
3) The logical structure of society
4) Rationality and society
Saturday, 6 September 2008
The Princeton Companion of Mathematics out in november!
A fabulous book is going to be published in november: The Princeton Companion to Mathematics, edited by Timothy Gowers, June Barrow-Green and Imre Leader, associate editors.
Notes:
1) There is a nice podcast with Th. Gowers in the Princeton Press' page.
2) You should have a look at Th. Gowers' weblog.
Full Table of Content: click on "More?".
TABLE OF CONTENTS:
Preface ix
Contributors xvii
Part I Introduction
I.1 What Is Mathematics About? 1
I.2 The Language and Grammar of Mathematics 8
I.3 Some Fundamental Mathematical Definitions 16
I.4 The General Goals of Mathematical Research 48
Part II The Origins of Modern Mathematics
II.1 From Numbers to Number Systems 77
II.2 Geometry 83
II.3 The Development of Abstract Algebra 95
II.4 Algorithms 106
II.5 The Development of Rigor in Mathematical Analysis 117
II.6 The Development of the Idea of Proof 129
II.7 The Crisis in the Foundations of Mathematics 142
Part III Mathematical Concepts
III.1 The Axiom of Choice 157
III.2 The Axiom of Determinacy 159
III.3 Bayesian Analysis 159
III.4 Braid Groups 160
III.5 Buildings 161
III.6 Calabi-Yau Manifolds 163
III.7 Cardinals 165
III.8 Categories 165
III.9 Compactness and Compactification 167
III.10 Computational Complexity Classes 169
III.11 Countable and Uncountable Sets 170
III.12 C*-Algebras 172
III.13 Curvature 172
III.14 Designs 172
III.15 Determinants 174
III.16 Differential Forms and Integration 175
III.17 Dimension 180
III.18 Distributions 184
III.19 Duality 187
III.20 Dynamical Systems and Chaos 190
III.21 Elliptic Curves 190
III.22 The Euclidean Algorithm and Continued Fractions 191
III.23 The Euler and Navier-Stokes Equations 193
III.24 Expanders 196
III.25 The Exponential and Logarithmic Functions 199
III.26 The Fast Fourier Transform 202
III.27 The Fourier Transform 204
III.28 Fuchsian Groups 208
III.29 Function Spaces 210
III.30 Galois Groups 213
III.31 The Gamma Function 213
III.32 Generating Functions 214
III.33 Genus 215
III.34 Graphs 215
III.35 Hamiltonians 215
III.36 The Heat Equation 216
III.37 Hilbert Spaces 219
III.38 Homology and Cohomology 221
III.39 Homotopy Groups 221
III.40 The Ideal Class Group 221
III.41 Irrational and Transcendental Numbers 222
III.42 The Ising Model 223
III.43 Jordan Normal Form 223
III.44 Knot Polynomials 225
III.45 K-Theory 227
III.46 The Leech Lattice 227
III.47 L-Functions 228
III.48 Lie Theory 229
III.49 Linear and Nonlinear Waves and Solitons 234
III.50 Linear Operators and Their Properties 239
III.51 Local and Global in Number Theory 241
III.52 The Mandelbrot Set 244
III.53 Manifolds 244
III.54 Matroids 244
III.55 Measures 246
III.56 Metric Spaces 247
III.57 Models of Set Theory 248
III.58 Modular Arithmetic 249
III.59 Modular Forms 250
III.60 Moduli Spaces 252
III.61 The Monster Group 252
III.62 Normed Spaces and Banach Spaces 252
III.63 Number Fields 254
III.64 Optimization and Lagrange Multipliers 255
III.65 Orbifolds 257
III.66 Ordinals 258
III.67 The Peano Axioms 258
III.68 Permutation Groups 259
III.69 Phase Transitions 261
III.70 p 261
III.71 Probability Distributions 263
III.72 Projective Space 267
III.73 Quadratic Forms 267
III.74 Quantum Computation 269
III.75 Quantum Groups 272
III.76 Quaternions, Octonions, and Normed Division Algebras 275
III.77 Representations 279
III.78 Ricci Flow 279
III.79 Riemann Surfaces 282
III.80 The Riemann Zeta Function 283
III.81 Rings, Ideals, and Modules 284
III.82 Schemes 285
III.83 The Schrödinger Equation 285
III.84 The Simplex Algorithm 288
III.85 Special Functions 290
III.86 The Spectrum 294
III.87 Spherical Harmonics 295
III.88 Symplectic Manifolds 297
III.89 Tensor Products 301
III.90 Topological Spaces 301
III.91 Transforms 303
III.92 Trigonometric Functions 307
III.93 Universal Covers 309
III.94 Variational Methods 310
III.95 Varieties 313
III.96 Vector Bundles 313
III.97 Von Neumann Algebras 313
III.98 Wavelets 313
III.99 The Zermelo-Fraenkel Axioms 314
Part IV Branches of Mathematics
IV.1 Algebraic Numbers 315
IV.2 Analytic Number Theory 332
IV.3 Computational Number Theory 348
IV.4 Algebraic Geometry 363
IV.5 Arithmetic Geometry 372
IV.6 Algebraic Topology 383
IV.7 Differential Topology 396
IV.8 Moduli Spaces 408
IV.9 Representation Theory 419
IV.10 Geometric and Combinatorial Group Theory 431
IV.11 Harmonic Analysis 448
IV.12 Partial Differential Equations 455
IV.13 General Relativity and the Einstein Equations 483
IV.14 Dynamics 493
IV.15 Operator Algebras 510
IV.16 Mirror Symmetry 523
IV.17 Vertex Operator Algebras 539
IV.18 Enumerative and Algebraic Combinatorics 550
IV.19 Extremal and Probabilistic Combinatorics 562
IV.20 Computational Complexity 575
IV.21 Numerical Analysis 604
IV.22 Set Theory 615
IV.23 Logic and Model Theory 635
IV.24 Stochastic Processes 647
IV.25 Probabilistic Models of Critical Phenomena 657
IV.26 High-Dimensional Geometry and Its Probabilistic Analogues 670
Part V Theorems and Problems
V.1 The ABC Conjecture 681
V.2 The Atiyah-Singer Index Theorem 681
V.3 The Banach-Tarski Paradox 684
V.4 The Birch-Swinnerton-Dyer Conjecture 685
V.5 Carleson's Theorem 686
V.6 The Central Limit Theorem 687
V.7 The Classification of Finite Simple Groups 687
V.8 Dirichlet's Theorem 689
V.9 Ergodic Theorems 689
V.10 Fermat's Last Theorem 691
V.11 Fixed Point Theorems 693
V.12 The Four-Color Theorem 696
V.13 The Fundamental Theorem of Algebra 698
V.14 The Fundamental Theorem of Arithmetic 699
V.15 Gödel's Theorem 700
V.16 Gromov's Polynomial-Growth Theorem 702
V.17 Hilbert's Nullstellensatz 703
V.18 The Independence of the Continuum Hypothesis 703
V.19 Inequalities 703
V.20 The Insolubility of the Halting Problem 706
V.21 The Insolubility of the Quintic 708
V.22 Liouville's Theorem and Roth's Theorem 710
V.23 Mostow's Strong Rigidity Theorem 711
V.24 The P versus NP Problem 713
V.25 The Poincaré Conjecture 714
V.26 The Prime Number Theorem and the Riemann Hypothesis 714
V.27 Problems and Results in Additive Number Theory 715
V.28 From Quadratic Reciprocity to Class Field Theory 718
V.29 Rational Points on Curves and the Mordell Conjecture 720
V.30 The Resolution of Singularities 722
V.31 The Riemann-Roch Theorem 723
V.32 The Robertson-Seymour Theorem 725
V.33 The Three-Body Problem 726
V.34 The Uniformization Theorem 728
V.35 The Weil Conjectures 729
Part VI Mathematicians
VI.1 Pythagoras (ca. 569 B.C.E.-ca. 494 B.C.E.) 733
VI.2 Euclid (ca. 325 B.C.E.-ca. 265 B.C.E.) 734
VI.3 Archimedes (ca. 287 B.C.E.-212 B.C.E.) 734
VI.4 Apollonius (ca. 262 B.C.E.-ca. 190 B.C.E.) 735
VI.5 Abu Ja'far Muhammad ibn Musa al-Khwarizmi (800-847) 736
VI.6 Leonardo of Pisa (known as Fibonacci) (ca. 1170-ca. 1250) 737
VI.7 Girolamo Cardano (1501-1576) 737
VI.8 Rafael Bombelli (1526-after 1572) 737
VI.9 François Viète (1540-1603) 737
VI.10 Simon Stevin (1548-1620) 738
VI.11 René Descartes (1596-1650) 739
VI.12 Pierre Fermat (160?-1665) 740
VI.13 Blaise Pascal (1623-1662) 741
VI.14 Isaac Newton (1642-1727) 742
VI.15 Gottfried Wilhelm Leibniz (1646-1716) 743
VI.16 Brook Taylor (1685-1731) 745
VI.17 Christian Goldbach (1690-1764) 745
VI.18 The Bernoullis (fl. 18th century) 745
VI.19 Leonhard Euler (1707-1783) 747
VI.20 Jean Le Rond d'Alembert (1717-1783) 749
VI.21 Edward Waring (ca. 1735-1798) 750
VI.22 Joseph Louis Lagrange (1736-1813) 751
VI.23 Pierre-Simon Laplace (1749-1827) 752
VI.24 Adrien-Marie Legendre (1752-1833) 754
VI.25 Jean-Baptiste Joseph Fourier (1768-1830) 755
VI.26 Carl Friedrich Gauss (1777-1855) 755
VI.27 Siméon-Denis Poisson (1781-1840) 757
VI.28 Bernard Bolzano (1781-1848) 757
VI.29 Augustin-Louis Cauchy (1789-1857) 758
VI.30 August Ferdinand Möbius (1790-1868) 759
VI.31 Nicolai Ivanovich Lobachevskii (1792-1856) 759
VI.32 George Green (1793-1841) 760
VI.33 Niels Henrik Abel (1802-1829) 760
VI.34 János Bolyai (1802-1860) 762
VI.35 Carl Gustav Jacob Jacobi (1804-1851) 762
VI.36 Peter Gustav Lejeune Dirichlet (1805-1859) 764
VI.37 William Rowan Hamilton (1805-1865) 765
VI.38 Augustus De Morgan (1806-1871) 765
VI.39 Joseph Liouville (1809-1882) 766
VI.40 Eduard Kummer (1810-1893) 767
VI.41 Évariste Galois (1811-1832) 767
VI.42 James Joseph Sylvester (1814-1897) 768
VI.43 George Boole (1815-1864) 769
VI.44 Karl Weierstrass (1815-1897) 770
VI.45 Pafnuty Chebyshev (1821-1894) 771
VI.46 Arthur Cayley (1821-1895) 772
VI.47 Charles Hermite (1822-1901) 773
VI.48 Leopold Kronecker (1823-1891) 773
VI.49 Georg Friedrich Bernhard Riemann (1826-1866) 774
VI.50 Julius Wilhelm Richard Dedekind (1831-1916) 776
VI.51 Émile Léonard Mathieu (1835-1890) 776
VI.52 Camille Jordan (1838-1922) 777
VI.53 Sophus Lie (1842-1899) 777
VI.54 Georg Cantor (1845-1918) 778
VI.55 William Kingdon Clifford (1845-1879) 780
VI.56 Gottlob Frege (1848-1925) 780
VI.57 Christian Felix Klein (1849-1925) 782
VI.58 Ferdinand Georg Frobenius (1849-1917) 783
VI.59 Sofya (Sonya) Kovalevskaya (1850-1891) 784
VI.60 William Burnside (1852-1927) 785
VI.61 Jules Henri Poincaré (1854-1912) 785
VI.62 Giuseppe Peano (1858-1932) 787
VI.63 David Hilbert (1862-1943) 788
VI.64 Hermann Minkowski (1864-1909) 789
VI.65 Jacques Hadamard (1865-1963) 790
VI.66 Ivar Fredholm (1866-1927) 791
VI.67 Charles-Jean de la Vallée Poussin (1866-1962) 792
VI.68 Felix Hausdorff (1868-1942) 792
VI.69 Élie Joseph Cartan (1869-1951) 794
VI.70 Emile Borel (1871-1956) 795
VI.71 Bertrand Arthur William Russell (1872-1970) 795
VI.72 Henri Lebesgue (1875-1941) 796
VI.73 Godfrey Harold Hardy (1877-1947) 797
VI.74 Frigyes (Frédéric) Riesz (1880-1956) 798
VI.75 Luitzen Egbertus Jan Brouwer (1881-1966) 799
VI.76 Emmy Noether (1882-1935) 800
VI.77 Wac?aw Sierpinski (1882-1969) 801
VI.78 George Birkhoff (1884-1944) 802
VI.79 John Edensor Littlewood (1885-1977) 803
VI.80 Hermann Weyl (1885-1955) 805
VI.81 Thoralf Skolem (1887-1963) 806
VI.82 Srinivasa Ramanujan (1887-1920) 807
VI.83 Richard Courant (1888-1972) 808
VI.84 Stefan Banach (1892-1945) 809
VI.85 Norbert Wiener (1894-1964) 811
VI.86 Emil Artin (1898-1962) 812
VI.87 Alfred Tarski (1901-1983) 813
VI.88 Andrei Nikolaevich Kolmogorov (1903-1987) 814
VI.89 Alonzo Church (1903-1995) 816
VI.90 William Vallance Douglas Hodge (1903-1975) 816
VI.91 John von Neumann (1903-1957) 817
VI.92 Kurt Gödel (1906-1978) 819
VI.93 André Weil (1906-1998) 819
VI.94 Alan Turing (1912-1954) 821
VI.95 Abraham Robinson (1918-1974) 822
VI.96 Nicolas Bourbaki (1935-) 823
Part VII The Influence of Mathematics
VII.1 Mathematics and Chemistry 827
VII.2 Mathematical Biology 837
VII.3 Wavelets and Applications 848
VII.4 The Mathematics of Traffic in Networks 862
VII.5 The Mathematics of Algorithm Design 871
VII.6 Reliable Transmission of Information 878
VII.7 Mathematics and Cryptography 887
VII.8 Mathematics and Economic Reasoning 895
VII.9 The Mathematics of Money 910
VII.10 Mathematical Statistics 916
VII.11 Mathematics and Medical Statistics 921
VII.12 Analysis, Mathematical and Philosophical 928
VII.13 Mathematics and Music 935
VII.14 Mathematics and Art 944
Part VIII Final Perspectives
VIII.1 The Art of Problem Solving 955
VIII.2 "Why Mathematics?" You Might Ask 966
VIII.3 The Ubiquity of Mathematics 977
VIII.4 Numeracy 983
VIII.5 Mathematics: An Experimental Science 991
VIII.6 Advice to a Young Mathematician 1000
VIII.7 A Chronology of Mathematical Events 1010
Index 1015
Lectures: Philippe Pettit
Philip Pettit is Laurence Rockfeller university professor at Princeton University and a political philosopher notable for his defence of republicanism.
In 2005, he received the Pufendorf Prize (from Lund University). Every winner of this prize is invited to give a lecture. You can find here a brief description and a link to the lectures (video, audio and text).
DEMOCRACY IN THREE DIMENSIONS
1) The Rule of the Populace
2) The Rule of the People
3) The Rule of the Public
4) Integrating the Dimensions.
In 2005, he received the Pufendorf Prize (from Lund University). Every winner of this prize is invited to give a lecture. You can find here a brief description and a link to the lectures (video, audio and text).
DEMOCRACY IN THREE DIMENSIONS
1) The Rule of the Populace
2) The Rule of the People
3) The Rule of the Public
4) Integrating the Dimensions.
Tuesday, 2 September 2008
Lectures: David Armstrong
David Armstrong is emeritus Professor of Philosophy of the University of Sydney. He is a well-known metaphysician and philosopher of mind and an expert in the history of the Analytic tradition.
In 2004, he received the Pufendorf Prize, from Lund University and was invited to give some lectures.
Here you can find a brief description of the lectures and the link to the lectures (video, audio and text)
D. Armstrong lectures
The Scope and Limits of human Knowledge
In Defence of the cognitivist Theory of Perception
Four Dispute about Properties
Predication and Necessity
Addendum (04/09/2008):
Olivier Massin suggests in his comment a lot of works by Armstrong or about Armstrong, for French-speaking people:
Métaphysique, Ontologie, Esprit, par François Loth: Universalia in Rebus: le réalisme de Armstrong.
J.-M. Monnoyer (ed.), La structure du monde. Objets, propriétés, états de choses. Renouveau de la métaphysique dans l'école australienne de philosophie, Paris, Vrin, 2004, 664 p. (Contient des articles de Armstrong).
Emmanuelle Garcia et Frédéric Nef (éds.), Textes Clés de métaphysique contemporaine Propriétés, mondes possibles et personnes, Vrin, « Textes clés", 384 p.
Introduction à la métaphysique, Université de Genève (cours de Keller et al.). (Merci Olivier pour ce lien: c'est un excellent cours!).
Et Olivier propose deux textes pour entrer dans Armstrong:
*Armstrong, A World State of Affairs, Cambridge University Press
*Armstrong, Universals, an opinionated Introduction, Westview Press, 1989
Merci Olivier!
In 2004, he received the Pufendorf Prize, from Lund University and was invited to give some lectures.
Here you can find a brief description of the lectures and the link to the lectures (video, audio and text)
D. Armstrong lectures
The Scope and Limits of human Knowledge
In Defence of the cognitivist Theory of Perception
Four Dispute about Properties
Predication and Necessity
Addendum (04/09/2008):
Olivier Massin suggests in his comment a lot of works by Armstrong or about Armstrong, for French-speaking people:
Métaphysique, Ontologie, Esprit, par François Loth: Universalia in Rebus: le réalisme de Armstrong.
J.-M. Monnoyer (ed.), La structure du monde. Objets, propriétés, états de choses. Renouveau de la métaphysique dans l'école australienne de philosophie, Paris, Vrin, 2004, 664 p. (Contient des articles de Armstrong).
Emmanuelle Garcia et Frédéric Nef (éds.), Textes Clés de métaphysique contemporaine Propriétés, mondes possibles et personnes, Vrin, « Textes clés", 384 p.
Introduction à la métaphysique, Université de Genève (cours de Keller et al.). (Merci Olivier pour ce lien: c'est un excellent cours!).
Et Olivier propose deux textes pour entrer dans Armstrong:
*Armstrong, A World State of Affairs, Cambridge University Press
*Armstrong, Universals, an opinionated Introduction, Westview Press, 1989
Merci Olivier!
Subscribe to:
Posts (Atom)